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tuents,24 vs. the frequency shifts of the 1637-cm"1 Raman line. 
Only the sterically hindered 5-nitro and phenyl derivatives lie off 
the line. The correlation with phen acceptor properties (Figure 
1), together with a pattern of shifts in the Raman lines consistent 
with changes in T density, provides strong evidence for charge-
transfer stabilization of the molecular complex. 

Visible absorption spectral studies give a rough correlation 
between log K and the shift in frequency of the 1637-cm"1 Raman 
line. Charge transfer accounts for more than 1 order of magnitude 
in K or about 20% of the binding energy (AG). The tightness 
(log K > 6) of the methyl viologen dication complex is explained 
by the strong electrostatic interaction, which presumably induces 
an "unfavorable" charge transfer in the ground state, making 
viologen (normally a stronger acceptor then phen) a donor. 

Recently, Shelnutt el al., observed that the O2 affinity properties 
of hemoglobin13 and myoglobin25 correlate with the shifts in the 
7r-electron density marker lines. A charge-transfer model for 
cooperative O2 binding was suggested.1314 We also pointed out 
that nearby aromatic amino acid residues could form donor-ac­
ceptor complexes with the porphyrin. The present data shows for 
the first time that molecular complexes give shifts in the ir-density 
marker lines like those observed in hemoglobin.26 

(24) Hine, J. "Physical Organic Chemistry"; McGraw Hill: New York, 
1962; p 87. 

(25) Shelnutt, J. A.; Rousseau, D. L., unpublished result. 
(26) Shelnutt, J. A., submitted to Biochemistry. 
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Dioxygen adduct complexes of metal ions have been the subject 
of many recent investigations.1,2 Four types of structures have 
been observed (I-IV),3 and correlations between the 0 - 0 bond 
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length and the 0 - 0 symmetrical stretch have been made. I and 
II are formulated as the superoxide ion, O2". With a bond order 
of 1.5, the bond distances for II fall in the range 1.10-1.30 A, 
and j-o-o 1075-1195 cm"1.4 For the bridged peroxo situation (IV), 
the lengths reside between 1.40 and 1.50 A, and V0-O 790 and 930 
cm"1.4 The ionic compounds KO2 and Na2O2 exhibit values of 
1.28 A and 1145 cm"1, and 1.49 A and 842 cm"1, respectively,3 

for bond distances and V0-O. 
In the course of our studies on high-oxygen content organo-

aluminum compounds, we have carried out the reaction of KO2 
and A1(CH3)3 according to 

KO2 + 2Al(CHj)3 + dibenzo-18-crown-6 (V) "°™uc, 
[K-dibenzo-18-crown-6] [ A12(CH3)602] 

To our surprise the new complex is thermally stable for at least 
24 h in refluxing toluene. More interesting, the single-crystal 

(1) Sugiura, Y. J. Am. Chem. Soc. 1980, 102, 5216. 
(2) Bertini, I.; Luchinat, C; Scozzafava, A. J. Am. Chem. Soc. 1980,102, 

7349. 
(3) Jones, R. D.; Summerville, D. A.; Basolo, F. Chem. Rev. 1979, 79, 139. 
(4) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry"; In-

terscience: New York, 1980; pp 156-157. 
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Figure 1. Structure of the anion [A12(CH3)602]", with the atoms rep­
resented by their 50% probability ellipsoids for thermal motion. 

X-ray structure5 has revealed a new type of coordination mode 
for the superoxide ion (See VI and Figure 1). The dioxygen 
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moiety must be regarded as O2" for charge balance, but the 0 - 0 
bond length is much longer than any previously found for a su­
peroxide ion. Unfortunately, the distance is not known with great 
accuracy because of the high thermal motion of the nonbridging 
oxygen atom. The 0 - 0 value is 1.47 (2) A. The weakness of 
the O-O linkage is also substantiated by the IR spectrum (Nujol 
mull) in which the V0-O is assigned to the band at 851 cm"1. 

The importance of the new bonding mode is underscored by 
a consideration of the hemerythrins, a group of oxygen-carrying 
proteins. The resonance Raman spectrum of oxyhemerythrin 
shows an assigned 0 - 0 stretch at 844 cm"1.6 The two oxygen 
atoms have also been shown to exist in two different environments. 
Structures VI and VIII were proposed.6 Our investigation 
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VII 
demonstrates that a low V0-O and long 0 - 0 length may be as­
sociated with not only a peroxo group but also with the superoxo 

(5) The space group is the triclinic P\ with unit cell parameters a = 13.210 
(8), b= 13.671 (8), c= 14.090 (8) A; a = 68.11 (4), 0 = 65.46 (4), y = 87.42 
(4)"; Z>c = 1.08 g cm"3 for Z = 2; X = 0.71069 A, and T = 22 0C. Least-
squares refinement based on 1509 observed reflections led to a final R value 
of 0.084. The hydrogen atoms of the crown ether were included with fixed 
contributions and those of the anion were located on a difference Fourier map, 
but their parameters were not refined. The nonhydrogen atoms of the crown, 
the anion, and the potassium ion were refined with anisotropic thermal pa­
rameters. The overall accuracy of the structure is impaired by the disorder 
(or high thermal motion) associated with the benzene molecules. 

(6) Dunn, J. B.; Shriver, D. F.; Klotz, I. M. Biochemistry 1975,14, 2689. 
Kurtz, D. M.; Shriver, D. F.; Klotz, I. M. / . Am. Chem. Soc. 1976, 98, 5033. 
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ligand in the single oyxgen bridge mode VI. 
The Al-O lengths, 1.852(9) and 1.868(9) A, are normal,7 and 

the overall geometry of the anion conforms closely to that found 
in related complexes such as K[A12(CH3)6N3]

8 [i.e., Al-O-Al = 
128.3 (7)° vs. Al-N-Al = 128.0 (3)°]. 
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(7) Atwood, J. L.; Hunter, W. E.; Crissinger, K. D. J. Organomet. Chem. 
1977, 127, 403. 

(8) Atwood, J. L.; Newberry, W. R. J. Organomet. Chem. 1974, 65, 145. 
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The extensive activity in recent years to control acyclic stere­
ochemistry has resulted in a number of reports dealing with 
diastereoselection and/or enantioselection. A few of these have 
reached very impressive levels of success by using boron enolates.1 

We wish to report that our studies using the boron azaenolates, 
1 and 2, derived from achiral2 and chiral oxazolines3 has led to 
some useful and surprising results in the area of acyclic stereo­
chemistry, particularly for the rarely reached threo isomers. Thus, 
by exchanging the chiral auxiliary from boron (1) to the heter-
ocycle (2), we have been successful in altering the stereochemical 
course of the aldol process from threo to erythro products with 
enantioselectivities of ~90% (77-85% ee) in the former and 
~ 70-80% (40-60% ee) in the latter. Table I depicts the results 
obtained by using boron azaenolate I4"6 with several representative 
aldehydes. The reactions were carried out by adding 1.0 equiv 
of the aldehyde to preformed boron azaenolate 1 in ether at -78 
0C, stirring for 2 h, and then warming to -20 0C for 1 h. 
Phosphate buffer (pH 7) was added along with methanol and 30% 
hydrogen peroxide at 0 0C. Usual extraction and drying proce­
dures gave the alkylated oxazoline which was hydrolyzed to the 

(1) (a) Fenzl, W.; Kster, R.; Zimmerman, H. J. Liebigs Ann. Chem. 1975, 
2201. (b) Masamune, S.; Mori, D.; Horn, D. V.; Brooks, D. W. Tetrahedron 
Lett. 1979, 1665. (c) Hirama, M.; Masamune, S. Ibid. 1979, 2225. (d) van 
Horn, D.; Masamune, S. Ibid. 1979, 2229. (e) Hirama, M.; Garvey, D. S.; 
Lu, L. D.; Masamune, S. Ibid. 1979, 3937. (f) Evans, D. A.; Vogel, E.; 
Nelson, J. V. J. Am. Chem. Soc. 1979,101, 6120. (g) Herold, T.; Hoffmann, 
R. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 768. (h) Hoffmann, R. W., 
Zeiss, H. J. Ibid. 1980, 19, 218. (i) Hoffmann, R. W. Ladner, W. Tetra­
hedron Lett. 1979, 4653. (j) Sugasawa, T.; Toyada, T. Ibid. 1979, 1423. (k) 
Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc, in 
press. Undoubtedly, the most impressive example of diastereo- and enan­
tioselective erythro aldols arises from the recent work of Evans (private com­
munication) involving the boron enolates of chiral oxazolidinones. 

(2) Meyers, A. I.; Temple, D. L.; Nolen, R. L.; Mihelich, E. D. / . Org. 
Chm. 1974, 39, 2778. 

(3) Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am. Chem. Soc. 
1976, 98, 567. 
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0-hydroxy acid by heating (12 h) in 3 N sulfuric acid. The crude 
acids were transformed into the methyl esters 3 by treatment with 
diazomethane. The five-step sequence from 2-ethyloxazoline to 
the hydroxy ester was carried out without any isolation and pu­
rification of intermediates. None of these steps have been as yet 
optimized. The threo configuration was assigned on the basis of 
1H NMR data which showed the a proton as a quintet at 5 2.6-2.7 
with J=I Hz.7 In order to assign absolute stereochemistry to 
threo-3, the chiral oxazoline 5 was metalated and treated with 
isobutyraldehyde to give four diastereoisomers as previously re­
ported;71' 6a and 6b were correlated to (-)-and (+)-threo-3, 
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(4) The boron azaenolates 1 and 2 were prepared from the oxazolines by 
using boryl triflates as reported by Mukaiyama.5 Preparation of 1: Borane 
in THF (1 M, 57 mL), (+)-a-pinene (17.8 g, [a]D 41.1°) was added together 
under nitrogen and stored at 0 0C for 3 days upon which a precipitate ap­
peared. After cooling the solution to -30 °C, the precipitate was collected, 
giving diisopinocampheylborane of 99.8% optical purity as described by 
Brown.6 After drying in vacuo (13.5 g, 83%), the borane was dissolved in 
hexane (250 mL) and trifluoromethanesulfonic acid (7.1 g) was added at 0 
0C (hydrogen evolution!). After stirring overnight, the solution was filtered 
and evaporated and the residue (diisopinocampheylboryl triflate) was used 
without further purification. Addition of 2-ethyl-4,4-dimethyloxazoline (0.72 
g) to 2.5 g of the boryl triflate in 42 mL of ether and addition of 0.73 g 
diisopropylethylamine at -78 °C gave a mixture which was stirred for 1 h 
(amine triflate precipitated). The solution and precipitate were used as such 
for the aldol reactions. Preparation of 2: this was accomplished by using 0.88 
g of (45,5S)-2-ethyl-4-(methoxymethyl)-5-phenyloxazoline, 1.08 g of 9-bor-
abicyclononane triflate,5 and 0.52 g of diisopropylethylamine in the manner 
described above. 

(5) Inoue, T.; Uchimaru, T.; Mukaiyama, T. Chem. Lett. 1977, 153. 
(6) Brown, H. C; Yoon, N. U.hraelj. Chem. 1976, 15, 12. 
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